

pbuilder User’s Manual: Usage and operations

Note

This is not official documentation: it’s just an attempt to format it for
sphinx [http://sphinx-doc.org] so ReadTheDocs [https://readthedocs.org/] service could be used.

The official documentation can be browsed at http://pbuilder.alioth.debian.org/

This particular document is also available as:

	EPub [https://media.readthedocs.org/epub/pbuilder-docs/latest/pbuilder-docs.epub]

	PDF [https://media.readthedocs.org/pdf/pbuilder-docs/latest/pbuilder-docs.pdf]

Last built: May 24, 2017

Table Of Contents

	Introducing pbuilder

	Using pbuilder

	Using User-mode-linux with pbuilder

	Frequently asked questions

	Troubleshooting and development

	Other uses of pbuilder

	Experimental or wishlist features of pbuilder

	Reference materials

	Minor archaeological details

Indices and tables

	Index

	Search Page

Introducing pbuilder

Aims of pbuilder

pbuilder stands for Personal Builder, and it is an automatic Debian
Package Building system for personal development workstation
environments. pbuilder aims to be an easy-to-setup system for
auto-building Debian packages inside a clean-room environment, so that
it is possible to verify that a package can be built on most Debian
installations. The clean-room environment is achieved through the use of
a base chroot image, so that only minimal packages will be installed
inside the chroot.

The Debian distribution consists of free software accompanied with
source. The source code within Debian’s “main” section must build within
Debian “main”, with only the explicitly specified build-dependencies
installed.

The primary aim of pbuilder is different from other auto-building
systems in Debian in that its aim is not to try to build as many
packages as possible. It does not try to guess what a package needs, and
in most cases it tries the worst choice of all if there is a choice to
be made.

In this way, pbuilder tries to ensure that packages tested against
pbuilder will build properly in most Debian installations, hopefully
resulting in a good overall Debian source-buildability.

The goal of making Debian buildable from source is somewhat
accomplished, and has seen good progress. In the past age of Debian 3.0,
there were many problems when building from source. More recent versions
of Debian is much better.

Using pbuilder

There are several simple commands for operation. pbuilder create,
pbuilder update, and pbuilder build commands are the typical commands
used. Let us look at the commands one by one.

Creating a base chroot image tar-ball

pbuilder create will create a base chroot image tar-ball (base.tgz).
All other commands will operate on the resulting base.tgz If the Debian
release to be created within chroot is not going to be “sid” (which is
the default), the distribution code-name needs to be specified with the
--distribution command-line option.

debootstrap [1] is used to create the bare minimum Debian
installation, and then build-essential packages are installed on top of
the minimum installation using apt-get inside the chroot.

For fuller documentation of command-line options, see the pbuilder(8)
manual page. Some configuration will be required for /etc/pbuilderrc
for the mirror site [2] to use, and proxy configuration may be
required to allow access through HTTP. See the pbuilderrc(5) manual page
for details.

Updating the base.tgz

pbuilder update will update the base.tgz. It will extract the
chroot, invoke apt-get update and apt-get dist-upgrade inside
the chroot, and then recreate the base.tgz (the base tar-ball).

It is possible to switch the distribution which the base.tgz is targeted at at
this point. Specify --distribution sid --override-config to change
the distribution to sid [3].

For fuller documentation of command-line options, see the pbuilder(8)
manual page

Building a package using the base.tgz

To build a package inside the chroot, invoke pbuilder build whatever.dsc.
pbuilder will extract the base.tgz to a temporary working directory,
enter the directory with chroot, satisfy the build-dependencies inside
chroot, and build the package. The built packages will be moved to a
directory specified with the --buildresult command-line option.

The --basetgz option can be used to specify which base.tgz to use.

pbuilder will extract a fresh base chroot image from base.tgz.
(base.tgz is created with pbuilder create, and updated with
pbuilder update). The chroot is populated with build-dependencies by
parsing debian/control and invoking apt-get.

For fuller documentation of command-line options, see the pbuilder(8)
manual page

Facilitating Debian Developers’ typing, pdebuild

pdebuild is a little wrapper script that does the most frequent of
all tasks. A Debian Developer may try to do debuild, and build a
package, inside a Debian source directory. pdebuild will allow
similar control, and allow package to be built inside the chroot, to
check that the current source tree will build happily inside the chroot.

pdebuild calls dpkg-source to build the source packages, and then
invokes pbuilder on the resulting source package. However, unlike debuild,
the resulting deb files will be found in the --buildresult directory.

See the pdebuild(1) manual page for more details.

There is a slightly different mode of operation available in pdebuild since
version 0.97. pdebuild usually runs debian/rules clean outside of the
chroot; however, it is possible to change the behavior to run it inside the
chroot with the --use-pdebuild-internal. It will try to bind mount
the working directory inside chroot, and run dpkg-buildpackage inside. It
has the following characteristics, and is not yet the default mode of
operation.

	Satisfies build-dependency inside the chroot before creating source
package. (which is a good point that default pdebuild could not
do).

	The working directory is modified from inside the chroot.

	Building with pdebuild does not guarantee that it works with
pbuilder.

	If making the source package fails, the session using the chroot is
wasted (chroot creation takes a bit of time, which should be improved
with cowdancer).

	Does not work in the same manner as it used to; for example, --buildresult
does not have any effect.

	The build inside chroot is ran with the current user outside chroot.

Configuration Files

It is possible to specify all settings by command-line options. However,
for typing convenience, it is possible to use a configuration file.

/etc/pbuilderrc and $HOME/.pbuilderrc are read in when
pbuilder is invoked. The possible options are documented in the
pbuilderrc(5) manual page.

It is useful to use --configfile option to load up a preset
configuration file when switching between configuration files for different
distributions.

Please note $HOME/.pbuilderrc supersede system settings. Caveats
is that if you have some configuration, you may need to tweak the
configuration to work with new versions of pbuilder when upgrading.

Building packages as non-root inside the chroot

pbuilder requires full root privilege when it is satisfying the
build-dependencies, but most packages do not need root privilege to
build, or even refused to build when they are built as root.
pbuilder can create a user which is only used inside pbuilder
and use that user id when building, and use the fakeroot command
when root privilege is required.

BUILDUSERID configuration option should be set to a value for a user id
that does not already exist on the system, so that it is more difficult
for packages that are being built with pbuilder to affect the
environment outside the chroot. When BUILDUSERNAME configuration option
is also set, pbuilder will use the specified user name and fakeroot
for building packages, instead of running as root inside chroot.

Even when using the fakerooting method, pbuilder will run with root
privilege when it is required. For example, when installing packages to
the chroot, pbuilder will run under root privilege.

To be able to invoke pbuilder without being root, you need to use
user-mode-linux, as explained in Using User-mode-linux with pbuilder.

Using pbuilder for back-porting

pbuilder can be used for back-porting software from the latest
Debian distribution to the older stable distribution, by using a chroot
that contains an image of the older distribution, and building packages
inside the chroot. There are several points to consider, and due to the
following reasons, automatic back-porting is usually not possible, and
manual interaction is required:

	The package from the unstable distribution may depend on packages or
versions of packages which are only available in unstable. Thus, it
may not be possible to satisfy Build-Depends: on stable (without
additional backporting work).

	The stable distribution may have bugs that have been fixed in
unstable which need to be worked around.

	The package in the unstable distribution may have problems building
even on unstable.

Mass-building packages

pbuilder can be automated, because its operations are non-interactive. It
is possible to run pbuilder through multiple packages non-interactively.
Several such scripts are known to exist. Junichi Uekawa has been running such
a script since 2001, and has been filing bugs on packages that fail the test of
pbuilder. There were several problems with auto-building:

	Build-Dependencies need to install non-interactively, but some
packages are so broken that they cannot install without interaction
(like postgresql).

	When a library package breaks, or gcc/gcj/g++ breaks, or even bison,
a large number of build failures are reported. (gcj-3.0 which had no
“javac”, bison which got more strict, etc.)

	Some people were quite hostile against build failure reports.

Most of the initial bugs have been resolved in the pbuilder sweep
done around 2002, but these transitional problems which affect a large
portion of Debian Archive do arise from time to time. Regression tests
have their values.

A script that was used by Junichi Uekawa in the initial run is now
included in the pbuilder distribution, as pbuildd.sh. It is
available in /usr/share/doc/pbuilder/examples/pbuildd/ and its
configuration is in /etc/pbuilder/pbuildd-config.sh. It should be
easy enough to set up for people who are used to pbuilder. It has
been running for quite a while, and it should be possible to set the
application up on your system also. This version of the code is not the
most tested, but should function as a starter.

To set up pbuildd, there are some points to be aware of.

	A file ./avoidlist needs to be available with the list of
packages to avoid building.

	It will try building anything, even packages which are not aimed for
your architecture.

	Because you are running random build scripts, it is better to use the
fakeroot option of pbuilder, to avoid running the build under
root privilege.

	Because not all builds are guaranteed to finish in a finite time,
setting a timeout is probably necessary, or pbuildd may stall with a
bad build.

	Some packages require a lot of disk space, around 2GB seems to be
sufficient for the largest packages for the time being. If you find
otherwise, please inform the maintainer of this documentation.

Auto-backporting scripts

There are some people who use pbuilder to automatically back-port a
subset of packages to the stable distribution.

I would like some information on how people are doing it, I would
appreciate any feedback or information on how you are doing, or any
examples.

Using pbuilder for automated testing of packages

pbuilder can be used for automated testing of packages. It has the
feature of allowing hooks to be placed, and these hooks can try to
install packages inside the chroot, or run them, or whatever else that
can be done. Some known tests and ideas:

	Automatic install-remove-install-purge-upgrade-remove-upgrade-purge
test-suite (distributed as an example, B91dpkg-i), or just check
that everything installs somewhat (execute_installtest.sh).

	Automatically running lintian (distributed as an example in
/usr/share/doc/pbuilder/examples/B90lintian).

	Automatic debian-test of the package? The debian-test package has
been removed from Debian. A pbuilder implementation can be found
as debian/pbuilder-test directory, implemented through B92test-pkg
script.

To use B92test-pkg script, first, add it to your hook directory. [4].
The test files are shell scripts placed in
debian/pbuilder-test/NN_name (where NN is a number) following
run-parts standard [5] for file names. After a successful build,
packages are first tested for installation and removal, and then each
test is ran inside the chroot. The current directory is the top
directory of the source-code. This means you can expect to be able to
use ./debian/ directory from inside your scripts.

Example scripts for use with pbuilder-test can be found in
/usr/share/doc/pbuilder/examples/pbuilder-test.

Using pbuilder for testing builds with alternate compilers

Most packages are compiled with gcc or g++ and using the default
compiler version, which was gcc 2.95 for Debian GNU/Linux 3.0 (i386).
However, Debian 3.0 was distributed with other compilers, under package
names such as gcc-3.2 for gcc compiler version 3.2. It was therefore
possible to try compiling packages against different compiler versions.
pentium-builder provides an infrastructure for using a different
compiler for building packages than the default gcc, by providing a
wrapper script called gcc which calls the real gcc. To use
pentium-builder in pbuilder, it is possible to set up the
following in the configuration:

EXTRAPACKAGES="pentium-builder gcc-3.2 g++-3.2"
export DEBIAN_BUILDARCH=athlon
export DEBIAN_BUILDGCCVER=3.2

It will instruct pbuilder to install the pentium-builder package
and also the GCC 3.2 compiler packages inside the chroot, and set the
environment variables required for pentium-builder to function.

	[1]	debootstrap or cdebootstrap can be chosen

	[2]	The mirror site should preferably be a local mirror or a cache
server, so as not to overload the public mirrors with a lot of
access. Use of tools such as apt-proxy would be advisable.

	[3]	Only upgrading is supported. Debian does not generally support
downgrading (yet?).

	[4]	It is possible to specify --hookdir /usr/share/doc/pbuilder/examples
command-line option to include all example hooks as well.

	[5]	See run-parts(8). For example, no ‘.’ in file names!

Using User-mode-linux with pbuilder

It is possible to use user-mode-linux by invoking
pbuilder-user-mode-linux instead of pbuilder.
pbuilder-user-mode-linux doesn’t require root privileges, and it
uses the copy-on-write (COW) disk access method of User-mode-linux
which typically makes it much faster than the traditional pbuilder.

User-mode-linux is a somewhat less proven platform than the standard
Unix tools which pbuilder relies on (chroot, tar, and
gzip) but mature enough to support pbuilder-user-mode-linux
since its version 0.59. And since then, pbuilder-user-mode-linux has
seen a rapid evolution.

The configuration of pbuilder-user-mode-linux goes in three steps:

	Configuration of user-mode-linux

	Configuration of rootstrap

	Configuration of pbuilder-uml

Configuring user-mode-linux

user-mode-linux isn’t completely trivial to set up. It would probably be
useful to acquaint yourself with it a bit before attempting to use
rootstrap or pbuilder-user-mode-linux. For details, read
/usr/share/doc/uml-utilities/README.Debian and the
user-mode-linux documentation. (It’s in a separate package,
user-mode-linux-doc.)

user-mode-linux requires the user to be in the uml-net group in
order to configure the network unless you are using slirp.

If you compile your own kernel, you may want to verify that you enable
TUN/TAP support, and you might want to consider the SKAS patch.

Configuring rootstrap

rootstrap is a wrapper around debootstrap. It creates a Debian disk
image for use with UML. To configure rootstrap, there are several
requirements.

	Install the rootstrap package.

	TUN/TAP only: add the user to the uml-net group to allow access to
the network

adduser dancer uml-net

	TUN/TAP only: Check that the kernel supports the TUN/TAP interface,
or recompile the kernel if necessary.

	Set up /etc/rootstrap/rootstrap.conf. For example, if the current
host is 192.168.1.2, changing following entries to something like
this seems to work.

transport=tuntap
interface=eth0
gateway=192.168.1.1
mirror=http://192.168.1.2:8081/debian
host=192.168.1.198
uml=192.168.1.199
netmask=255.255.255.0

Some experimentation with configuration and running
rootstrap ~/test.uml to actually test it would be handy.

Using slirp requires less configuration. The default configuration
comes with a working example.

Configuring pbuilder-uml

The following needs to happen:

	Install the pbuilder-uml package.

	Set up the configuration file /etc/pbuilder/pbuilder-uml.conf in
the following manner. It will be different for slirp.

MY_ETH0=tuntap,,,192.168.1.198
UML_IP=192.168.1.199
UML_NETMASK=255.255.255.0
UML_NETWORK=192.168.1.0
UML_BROADCAST=255.255.255.255
UML_GATEWAY=192.168.1.1
PBUILDER_UML_IMAGE="/home/dancer/uml-image"

Also, it needs to match the rootstrap configuration.

	Make sure BUILDPLACE is writable by the user. Change BUILDPLACE in
the configuration file to a place where the user has access.

	Run pbuilder-user-mode-linux to create the image.

	Try running pbuilder-user-mode-linux build.

Considerations for running pbuilder-user-mode-linux

pbuilder-user-mode-linux emulates most of pbuilder, but there
are some differences.

	pbuilder-user-mode-linux does not support all options of
pbuilder properly yet. This is a problem, and will be addressed
as specific areas are discovered.

	/tmp is handled differently inside pbuilder-user-mode-linux. In
pbuilder-user-mode-linux, /tmp is mounted as tmpfs inside UML,
so accessing files under /tmp from outside user-mode-linux does not
work. It affects options like --configfile, and when trying to
build packages placed under /tmp.

Parallel running of pbuilder-user-mode-linux

To run pbuilder-user-mode-linux in parallel on a system, there are a
few things to bear in mind.

	The create and update methods must not be run when a build is in
progress, or the COW file will be invalidated.

	If you are not using slirp, user-mode-linux processes which are
running in parallel need to have different IP addresses. Just trying
to run the pbuilder-user-mode-linux several times will result in
failure to access the network. But something like the following will
work:

for IP in 102 103 104 105; do
 xterm -e pbuilder-user-mode-linux build --uml-ip 192.168.0.$IP \
 20030107/whizzytex_1.1.1-1.dsc &
done

When using slirp, this problem does not exist.

Using pbuilder-user-mode-linux as a wrapper script to start up a virtual machine

It is possible to use pbuilder-user-mode-linux for other uses than just
building Debian packages. pbuilder-user-mode-linux will let a user use a
shell inside the user-mode-linux pbuilder base image, and
pbuilder-user-mode-linux will allow the user to execute a script inside the
image.

You can use the script to install ssh and add a new user, so that it is
possible to access inside the user-mode-linux through ssh.

Note that it is not possible to use a script from /tmp due to the
way pbuilder-user-mode-linux mounts a tmpfs at /tmp.

The following example script may be useful in starting a sshd inside
user-mode-linux.

#!/bin/bash

apt-get install -y ssh xbase-clients xterm
echo "enter root password"
passwd
cp /etc/ssh/sshd_config{,-}
sed 's/X11Forwarding.*/X11Forwarding yes/' /etc/ssh/sshd_config- > /etc/ssh/sshd_config

/etc/init.d/ssh restart
ifconfig
echo "Hit enter to finish"
read

Frequently asked questions

Here, known problems and frequently asked questions are documented. This
portion was initially available in README.Debian file, but moved here.

pbuilder create fails

It often happens that pbuilder cannot create the latest chroot. Try
upgrading pbuilder and debootstrap. It is currently only possible to
create software that handles the past. Future prediction is a feature
which may be added later after we have become comfortable with the past.

There are people who occasionally back port debootstrap to stable
versions; hunt for them.

When there are errors with the debootstrap phase, the debootstrap script
needs to be fixed. pbuilder does not provide a way to work around
debootstrap.

Directories that cannot be bind-mounted

Because of the way pbuilder works, there are several directories
which cannot be bind-mounted when running pbuilder. The directories
include /tmp, /var/cache/pbuilder, and system directories such
as /etc and /usr. The recommendation is to use directories under
the user’s home directory for bind-mounts.

Logging in to pbuilder to investigate build failure

It is possible to invoke a shell session after a build failure. Example
hook scripts are provided as C10shell and C11screen scripts.
C10shell script will start bash inside chroot, and C11screen script will
start GNU screen inside the chroot.

Logging in to pbuilder to modify the environment

It is sometimes necessary to modify the chroot environment. login
will remove the contents of the chroot after logout. It is possible to
invoke a shell using hook scripts. pbuilder update executes ‘E’
scripts, and a sample for invoking a shell is provided as C10shell.

$ mkdir ~/loginhooks
$ cp C10shell ~/loginhooks/E10shell
$ sudo pbuilder update --hookdir ~/loginhooks/E10shell

It is also possible to add --save-after-exec and/or
--save-after-login options to the pbuilder login session to
accomplish the goal. It is possible to add the --uml-login-nocow
option to pbuilder-user-mode-linux session as well.

Setting BUILDRESULTUID for sudo sessions

It is possible to set

BUILDRESULTUID=$SUDO_UID

in pbuilderrc to set the proper BUILDRESULTUID when using sudo.

Notes on usage of $TMPDIR

If you are setting $TMPDIR to an unusual value, of other than /tmp,
you will find that some errors may occur inside the chroot, such as
dpkg-source failing.

There are two options, you may install a hook to create that directory,
or set

export TMPDIR=/tmp

in pbuilderrc. Take your pick.

An example script is provided as examples/D10tmp with pbuilder.

Creating a shortcut for running pbuilder with a specific distribution

When working with multiple chroots, it would be nice to work with
scripts that reduce the amount of typing. An example script
pbuilder-distribution.sh is provided as an example. Invoking the
script as pbuilder-squeeze will invoke pbuilder with a squeeze
chroot.

Using environmental variables for running pbuilder for specific distribution

This section [1] describes briefly a way to setup and use multiple
pbuilder setups by creating a pbuilderrc configuration in your home path
($HOME/.pbuilderrc) and using the variable “DIST” when running
pbuilder or pdebuild.

	[1]	This part of the documentation contributed by Andres Mejia

This example was taken from a wiki
(https://wiki.ubuntu.com/PbuilderHowto).

First, setup $HOME/.pbuilderrc to look like:

if [-n "${DIST}"]; then
 BASETGZ="`dirname $BASETGZ`/$DIST-base.tgz"
 DISTRIBUTION="$DIST"
 BUILDRESULT="/var/cache/pbuilder/$DIST/result/"
 APTCACHE="/var/cache/pbuilder/$DIST/aptcache/"
fi

Then, whenever you wish to use pbuilder for a particular distro, assign
a value to “DIST” that is one of the distros available for Debian or any
Debian based distro you happen to be running (i.e. whatever is found
under /usr/lib/debootstrap/scripts).

Here’s some examples on running pbuilder or pdebuild:

DIST=gutsy sudo pbuilder create

DIST=sid sudo pbuilder create --mirror http://http.us.debian.org/debian

DIST=gutsy sudo pbuilder create \
 --othermirror "deb http://archive.ubuntu.com/ubuntu gutsy universe \
 multiverse"

DIST=gutsy sudo pbuilder update

DIST=sid sudo pbuilder update --override-config --mirror \
http://http.us.debian.org/debian \
--othermirror "deb http://http.us.debian.org/debian sid contrib non-free"

DIST=gutsy pdebuild

Using special apt sources lists, and local packages

If you have some very specialized requirements on your apt setup inside
pbuilder, it is possible to specify that through the
--othermirror option. Try something like: --othermirror "deb
http://local/mirror stable main|deb-src http://local/source/repository ./"

To use the local file system instead of HTTP, it is necessary to do
bind-mounting. --bindmounts is a command-line option useful for such
cases.

It might be convenient to use your built packages from inside the
chroot. It is possible to automate the task with the following
configuration. First, set up pbuilderrc to bindmount your build results
directory.

BINDMOUNTS="/var/cache/pbuilder/result"

Then, add the following hook

cat /var/cache/pbuilder/hooks/D70results
#!/bin/sh
cd /var/cache/pbuilder/result/
/usr/bin/dpkg-scanpackages . /dev/null > /var/cache/pbuilder/result/Packages
/usr/bin/apt-get update

This way, you can use deb file:/var/cache/pbuilder/result

To add new apt-key inside chroot:

sudo pbuilder --login --save-after-login
apt-key add - <<EOF
...public key goes here...
EOF
logout

How to get pbuilder to run apt-get update before trying to satisfy build-dependency

You can use hook scripts for this. D scripts are run before satisfying
build-dependency.

This snippet comes from Ondrej
Sury. [http://lists.debian.org/debian-devel/2006/05/msg00550.html]

Different bash prompts inside pbuilder login

To make distinguishing bash prompts inside pbuilder easier, it is
possible to set environment variables such as PS1 inside pbuilderrc

With versions of bash more recent than 2.05b-2-15, the value of the
debian_chroot variable, if set, is included in the value of PS1 (the
Bash prompt) inside the chroot. In prior versions of bash, [2] setting
PS1 in pbuilderrc worked.

	[2]	Versions of bash from and before Debian 3.0

example of debian_chroot

export debian_chroot="pbuild$$"

example of PS1

export PS1="pbuild chroot 32165 # "

Creating a chroot reminder

Bash prompts will help you remember that you are inside a chroot. There
are other cases where you may want other signs of being inside a chroot.
Check out the examples/F90chrootmemo hook script. It will create a
file called /CHROOT inside your chroot.

Using /var/cache/apt/archives for the package cache

For the help of low-bandwidth systems, it is possible to use
/var/cache/apt/archives as the package cache. Just specify it
instead of the default /var/cache/pbuilder/aptcache.

It is however not possible to do so currently with the user-mode-linux
version of pbuilder, because /var/cache/apt/archives is usually
only writable by root.

Use of dedicated tools such as apt-proxy is recommended, since caching
of packages would benefit the system outside the scope of pbuilder.

pbuilder back ported to stable Debian releases

Currently stable back port of pbuilder is available at backports.org.

Warning about LOGNAME not being defined

You might see a lot of warning messages when running pbuilder.

dpkg-genchanges: warning: no utmp entry available and LOGNAME not defined; using uid of process (1234)

It is currently safe to ignore this warning message. Please report back
if you find any problem with having LOGNAME unset. Setting LOGNAME
caused a few problems when invoking chroot. For example, dpkg
requires getpwnam to succeed inside chroot, which means LOGNAME and the
related user information have to be set up inside chroot.

Cannot Build-conflict against an essential package

pbuilder does not currently allow Build-Conflicts against essential
packages. It should be obvious that essential packages should not be
removed from a working Debian system, and a source package should not
try to force removal of such packages on people building the package.

Avoiding the “ln: Invalid cross-device link” message

By default, pbuilder uses hard links to manage the pbuilder
package cache. It is not possible to make hard links across different
devices; and thus this error will occur, depending on your set up. If
this happens, set

APTCACHEHARDLINK=no

in your pbuilderrc file. Note that packages in APTCACHE will be
copied into chroot local cache, so plan for enough space on
BUILDPLACE device.

Using fakechroot

It is possible to use fakechroot instead of being root to run
pbuilder; however, several things make this impractical.
fakechroot overrides library loads and tries to override default
libc functions when providing the functionality of virtual chroot.
However, some binaries do no use libc to function, or override the
overriding provided by fakechroot. One example is ldd. Inside
fakechroot, ldd will check the library dependency outside of the
chroot, which is not the expected behavior.

To work around the problem, debootstrap has a --variant fakechroot
option. Use that, so that ldd and ldconfig are overridden.

Make sure you have set your LD_PRELOAD path correctly, as described in
the fakechroot manpage.

Using debconf inside pbuilder sessions

To use debconf inside pbuilder, setting DEBIAN_FRONTEND to
“readline” in pbuilderrc should work. Setting it to “dialog” should
also work, but make sure whiptail or dialog is installed inside the
chroot.

nodev mount options hinder pbuilder activity

If you see messages such as this when building a chroot, you are
mounting the file system with the nodev option.

/var/lib/dpkg/info/base-files.postinst: /dev/null: Permission denied

You will also have problems if you mount the file system with the noexec
option, or nosuid. Make sure you do not have these flags set when
mounting the file system for /var/cache/pbuilder or $BUILDPLACE.

This is not a problem when using user-mode-linux.

See 316135 [http://bugs.debian.org/316135] for example.

pbuilder is slow

pbuilder is often slow. The slowest part of pbuilder is
extracting the tar.gz every time pbuilder is invoked. That can be
avoided by using pbuilder-user-mode-linux.
pbuilder-user-mode-linux uses COW file system, and thus does not
need to clean up and recreate the root file system.

pbuilder-user-mode-linux is slower in executing the actual build
system, due to the usual user-mode-linux overhead for system calls.
It is more friendly to the hard drive.

pbuilder with cowdancer is also an alternative that improves speed
of pbuilder startup.

Using pdebuild to sponsor package

To sign a package marking for sponsorship, it is possible to use --auto-debsign
and --debsign-k options of pdebuild.

pdebuild --auto-debsign --debsign-k XXXXXXXX

Why is there a source.changes file in ../?

When running pdebuild, pbuilder will run dpkg-buildpackage to
create a Debian source package to pass it on to pbuilder. File named
XXXX_YYY_source.changes is what remains from that process. It is
harmless unless you try to upload it to the Debian archive.

This behavior is different when running through
--use-pdebuild-internal

amd64 and i386-mode

amd64 architectures are capable of running binaries in i386 mode. It is
possible to use pbuilder to run packages, using linux32 and
debootstrap --arch option. Specifically, a command-line option like the
following will work.

pbuilder create --distribution sid --debootstrapopts --arch --debootstrapopts i386 \
 --basetgz /var/cache/pbuilder/base-i386.tgz --mirror http://ftp.jp.debian.org/debian
linux32 pbuilder build --basetgz /var/cache/pbuilder/base-i386.tgz

Using tmpfs for buildplace

To improve speed of operation, it is possible to use tmpfs for pbuilder
build location. Mount tmpfs to /var/cache/pbuilder/build, and set

APTCACHEHARDLINK=no

Using svn-buildpackage together with pbuilder

pdebuild command can be used with svn-buildpackage –svn-builder
command-line option. [3]

	[3]	Zack has posted an example on his
blog. [http://upsilon.cc/~zack/blog/posts/2007/09/svn-cowbuilder/]

alias svn-cowbuilder="svn-buildpackage --svn-builder='pdebuild --pbuilder cowbuilder"

Troubleshooting and development

Reporting bugs

To report bugs, it would be important to have a log of what’s going
wrong. Most of the time, adding a --debug option and re-running the session
should do the trick. Please send the log of such session along with your
problem to ease the debugging process.

Mailing list

There is a mailing list for pbuilder on alioth
(pbuilder-maint@lists.alioth.debian.org). You can subscribe through the
alioth web interface [http://alioth.debian.org/mail/?group_id=30778].

IRC Channel

For coordination and communication, IRC channel #pbuilder on
irc.oftc.net is used. Please log your intent there when you are going to
start doing some changes and committing some change.

Information for pbuilder developers

This section tries to document current development practices and how
things generally operate in development.

pbuilder is co-maintained with resources provided by Alioth. There is an
Alioth project page at http://alioth.debian.org/projects/pbuilder. Home page
is also available, at http://pbuilder.alioth.debian.org/ which shows this text.
git repository is available through http, git, or, if you have an account on
alioth, ssh.

git-clone git://git.debian.org/git/pbuilder/pbuilder.git
git-clone http://git.debian.org/git/pbuilder/pbuilder.git
git-clone ssh://git.debian.org/git/pbuilder/pbuilder.git

Git commit message should have the first one line describing what the
commit does, formatted in the way debian/changelog is formatted because
it is copied verbatim to changelog via git-dch. The second line is
empty, and the rest should describe the background and extra information
related to implementation of the commit.

Test-suites are available in ./testsuite/ directory. Changes are
expected not to break the test-suites. ./run-test.sh is a basic
test-suite, which puts a summary in run-test.log, and
run-test-cdebootstrap.log. ./run-test-regression.sh is a
regression test-suite, which puts the result in
run-test-regression.log. Currently, run-test.sh is ran automatically
daily to ensure that pbuilder is working.

	Directory
	Meaning

	./testsuite/
	Directory for testsuite

	./testsuite/run-test.sh
	Daily regression test to test
against Debian Archive changes
breaking pbuilder.

	./testsuite/run-test.log
	A summary of testsuite

	./testsuite/normal/
	Directory for testsuite results of
running pbuilder with debootstrap

	./testsuite/cdebootstrap/
	Directory for testsuite results of
running pbuilder with cdebootstrap

	./testsuite/run-regression.sh
	Regression testsuite, ran every time
change is made to pbuilder to make
sure there is no regression.

	./testsuite/run-regression.log
	Summary of test result

	./testsuite/regression/BugID-*.sh
	Regression tests, exit 0 for
success, exit 1 for failure

	./testsuite/regression/BugID-*
	Files used for the regression
testsuite.

	./testsuite/regression/log/BugID-*
.sh.log
	Output of the regression test,
output from the script is redirected
by run-regression.sh

Table: Directory structure of the testsuite

When making changes, changes should be documented in the Git commit log.
git-dch will generate debian/changelog from the commit log. Make the
first line of your commit log meaningful, and add any bug-closing
information available. debian/changelog should not be edited directly
unless when releasing a new version.

A TODO file is available in debian/TODO. It’s mostly not
well-maintained, but hopefully it will be more up-to-date when people
start using it. emacs todoo-mode is used in editing the file.

When releasing a new version of pbuilder, the version is tagged with
the git tag X.XXX (version number). This is done with ./git-tag.sh
script available in the source tree.

Other uses of pbuilder

Using pbuilder for small experiments

There are cases when some small experimenting is required, and you do
not want to damage the main system, like when installing experimental
library packages, or compiling with experimental compilers. For such
cases, the pbuilder login command is available.

pbuilder login `` is a debugging feature for ``pbuilder itself, but
it also allows users to have a temporary chroot.

Note that the chroot is cleaned after logging out of the shell, and
mounting file systems inside it is considered harmful.

Running little programs inside the chroot

To facilitate using pbuilder for other uses, pbuilder execute is
available. pbuilder execute will take a script specified in the
command-line argument, and invoke the script inside the chroot.

The script can be useful for sequences of operations such as installing
ssh and adding a new user inside the chroot.

Experimental or wishlist features of pbuilder

There are some advanced features, above that of the basic feature of
pbuilder, for some specific purposes.

Using LVM

LVM2 has a useful snapshot function that features Copy-on-write images.
That could be used for pbuilder just as it can be used for the
user-mode-linux pbuilder port. lvmpbuilder script in the examples
directory implements such port. The scripts and documentation can be
found under /usr/share/doc/pbuilder/examples/lvmpbuilder/.

Using cowdancer

cowdancer allows copy-on-write semantics on file system using hard
links and hard-link-breaking-on-write tricks. pbuilder using
cowdancer seems to be much faster and it is one ideal point for
improvement. cowbuilder, a wrapper for pbuilder for using
cowdancer is available from cowdancer package since 0.14

Example command-lines for cowbuilder look like the following.

cowbuilder --create --distribution sid
cowbuilder --update --distribution sid
cowbuilder --build XXX.dsc

It is also possible to use cowdancer with pdebuild command. Specify with
command-line option --pbuilder or set it in PDEBUILD_PBUILDER
configuration option.

$ pdebuild --pbuilder cowbuilder

Using pbuilder without tar.gz

The --no-targz option of pbuilder will allow usage of pbuilder in a
different way from conventional usage. It will try to use an existing
chroot, and will not try to clean up after working on it. It is an
operation mode more like sbuild.

It should be possible to create base chroot images for dchroot with
the following commands:

pbuilder create --distribution lenny --no-targz --basetgz /chroot/lenny
pbuilder create --distribution squeeze --no-targz --basetgz /chroot/squeeze
pbuilder create --distribution sid --no-targz --basetgz /chroot/sid

Using pbuilder in a vserver

It is possible to use pbuilder in a vserver environment. This
requires either vserver-patches in version 2.1.1-rc14 or higher, or a
Linux kernel version 2.6.16 or higher.

To use pbuilder in a vserver, you need to set the secure_mount
CAPS in the ccapabilities of this vserver.

Usage of ccache

By default pbuilder will use the C compiler cache ccache to
speed up repeated builds of the same package (or packages that compile
the same files multiple times for some reason). Using ccache can
speed up repeated building of large packages dramatically, at the cost
of some disk space and bookkeeping.

To disable usage of ccache with pbuilder, you should unset
CCACHEDIR in your pbuilderrc file.

Reference materials

Directory structure outside the chroot

	Directory
	Meaning

	/etc/pbuilderrc
	configuration file

	/usr/share/pbuilder/pbuilderrc
	Default configuration

	/var/cache/pbuilder/base.tgz
	Default location pbuilder uses for
base.tgz, the tar-ball containing a
basic Debian installation with only
the build-essential packages.

	/var/cache/pbuilder/build/PID/
	Default location pbuilder uses for
chroot

	/var/cache/pbuilder/aptcache
	Default location pbuilder will
use as apt cache, to store deb
packages required during
pbuilder build.

	/var/cache/pbuilder/ccache
	Default location pbuilder will
use as cache location

	/var/cache/pbuilder/result
	Default location pbuilder puts
the deb files and other files
created after build

	/var/cache/pbuilder/pbuilder-umlre
sult
	Default location
pbuilder-user-mode-linux puts
the deb files and other files
created after build

	/var/cache/pbuilder/pbuilder-mnt
	Default location
pbuilder-user-mode-linux uses
for mounting the COW file system,
for chrooting.

	/tmp
	pbuilder-user-mode-linux will
mount tmpfs for work.

	${HOME}/tmp/PID.cow
	pbuilder-user-mode-linux use
this directory for location of COW
file system.

	${HOME}/uml-image
	pbuilder-user-mode-linux use
this directory for user-mode-linux
full disk image.

Table: Directory Structure outside the chroot

Directory structure inside the chroot

	Directory
	Meaning

	/etc/mtab
	symlink to /proc/mounts.

	/tmp/buildd
	Default place used in pbuilder
to place the Debian package to be
processed.
/tmp/buildd/packagename-version/
will be the root directory of the
package being processed. HOME
environment variable is set to this
value inside chroot by
pbuilder-buildpackage.
--inputfile will place files
here.

	/runscript
	The script passed as an argument to
pbuilder execute is passed on.

	/tmp/hooks
	The location of hooks.

	/var/cache/apt/archives
	pbuilder copies the content of
this directory to and from the
aptcache directory of outside
chroot.

	/var/cache/pbuilder/ccache
	pbuilder bind-mounts this
directory for use by ccache.

	/tmp/XXXX
	pbuilder-user-mode-linux uses a
script in /tmp to bootstrap into
user-mode-linux

Table: Directory Structure inside the chroot

Minor archaeological details

Documentation history

This document was started on 28 Dec 2002 by Junichi Uekawa, trying to
document what is known about pbuilder.

This documentation is available from the pbuilder source tar-ball,
and from the git repository of pbuilder (web-based access is
possible). A copy of this documentation can be found on the Alioth
project page for
pbuilder [http://pbuilder.alioth.debian.org/pbuilder-doc.html]. There
is also a PDF
version [http://pbuilder.alioth.debian.org/pbuilder-doc.pdf]. The
homepage for pbuilder is
http://pbuilder.alioth.debian.org/
hosted by alioth project.

Documentation is written using DocBook XML, with emacs PSGML mode, and
using wysidocbookxml for live previewing.

Possibly inaccurate Background History of pbuilder

The following is a most possibly inaccurate account of how pbuilder
came to happen, and other attempts to make something like pbuilder
happen. This part of the document was originally in the AUTHORS file, to
give credit to those who existed before pbuilder.

The Time Before pbuilder

There was once dbuild, which was a shell script to build Debian packages
from source. Lars Wirzenius wrote that script, and it was good, short,
and simple (probably). There was nothing like build-depends then (I
think), and it was simple. It could have been improved, I could only
find references and no actual source.

debbuild was probably written by James Troup. I don’t know it because I
have never seen the actual code, I could only find some references to it
on the net, and mailing list logs.

sbuild is a perl script to build Debian packages from source. It parses
Build-Depends, and performs other miscellaneous checks, and has a lot of
hacks to actually get things building, including a table of what package
to use when virtual packages are specified (does it do that still?). It
supports the use of a local database for packages which do not have
build-dependencies. It was written by Ronan Hodek, and I think it was
patched and fixed and extended by several people. It is part of
wanna-build, and used extensively in the Debian buildd system. I think
it was maintained mostly by Ryan Murray.

Birth of pbuilder

wanna-build (sbuild) was (at the time of year 2001) quite difficult to
set up, and it was never a Debian package. dbuild was something that
predated Build-Depends.

Building packages from source using Build-Depends information within a
chroot sounded trivial; and pbuilder was born. It was initially a
shell script with only a few lines, which called debootstrap and chroot
and dpkg-buildpackage in the same run, but soon, it was decided that
that’s too slow.

Yes, and it took almost an year to get things somewhat right, and in the
middle of the process, Debian 3.0 was released. Yay. Debian 3.0 wasn’t
completely buildable with pbuilder, but the amount of packages which
are not buildable is steadily decreasing (I hope).

And the second year of its life

Someone wanted pbuilder to not run as root, and as User-mode-linux
has become more useful as time passed, I’ve started experimenting with
pbuilder-user-mode-linux. pbuilder-user-mode-linux has not
stayed functional as much as I would have liked, and bootstrapping
user-mode-linux environment has been pretty hard, due to the quality
of user-mode-linux code or packaging at that time, which kept on
breaking network support in one way or the other.

Fifth year of pbuilder

pbuilder is now widely adopted as a ‘almost standard’ tool for
testing packages, and building packages in a pristine environment. There
are other similar tools that do similar tasks, but they do not share the
exact same goal. To commemorate this fact, pbuilder is now
co-maintained with several people.

sbuild is now a well-maintained Debian package within Debian, and
with pbuilder being such a slow monster, some people prefer the
approach of sbuild. Development to use LVM-snapshots, cowloop, or
cowdancer is hoped to improve the situation somewhat.

Index

 C
 | E

C

 	
 	CCACHEDIR

E

 	
 	
 environment variable

 	CCACHEDIR

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

nav.xhtml

 Table of Contents

 		pbuilder User's Manual: Usage and operations

 		Introducing pbuilder

 		Aims of pbuilder

 		Using pbuilder

 		Creating a base chroot image tar-ball

 		Updating the base.tgz

 		Building a package using the base.tgz

 		Facilitating Debian Developers' typing, pdebuild

 		Configuration Files

 		Building packages as non-root inside the chroot

 		Using pbuilder for back-porting

 		Mass-building packages

 		Auto-backporting scripts

 		Using pbuilder for automated testing of packages

 		Using pbuilder for testing builds with alternate compilers

 		Using User-mode-linux with pbuilder

 		Configuring user-mode-linux

 		Configuring rootstrap

 		Configuring pbuilder-uml

 		Considerations for running pbuilder-user-mode-linux

 		Parallel running of pbuilder-user-mode-linux

 		Using pbuilder-user-mode-linux as a wrapper script to start up a virtual machine

 		Frequently asked questions

 		pbuilder create fails

 		Directories that cannot be bind-mounted

 		Logging in to pbuilder to investigate build failure

 		Logging in to pbuilder to modify the environment

 		Setting BUILDRESULTUID for sudo sessions

 		Notes on usage of $TMPDIR

 		Creating a shortcut for running pbuilder with a specific distribution

 		Using environmental variables for running pbuilder for specific distribution

 		Using special apt sources lists, and local packages

 		How to get pbuilder to run apt-get update before trying to satisfy build-dependency

 		Different bash prompts inside pbuilder login

 		Creating a chroot reminder

 		Using /var/cache/apt/archives for the package cache

 		pbuilder back ported to stable Debian releases

 		Warning about LOGNAME not being defined

 		Cannot Build-conflict against an essential package

 		Avoiding the “ln: Invalid cross-device link” message

 		Using fakechroot

 		Using debconf inside pbuilder sessions

 		nodev mount options hinder pbuilder activity

 		pbuilder is slow

 		Using pdebuild to sponsor package

 		Why is there a source.changes file in ../?

 		amd64 and i386-mode

 		Using tmpfs for buildplace

 		Using svn-buildpackage together with pbuilder

 		Troubleshooting and development

 		Reporting bugs

 		Mailing list

 		IRC Channel

 		Information for pbuilder developers

 		Other uses of pbuilder

 		Using pbuilder for small experiments

 		Running little programs inside the chroot

 		Experimental or wishlist features of pbuilder

 		Using LVM

 		Using cowdancer

 		Using pbuilder without tar.gz

 		Using pbuilder in a vserver

 		Usage of ccache

 		Reference materials

 		Directory structure outside the chroot

 		Directory structure inside the chroot

 		Minor archaeological details

 		Documentation history

 		Possibly inaccurate Background History of pbuilder

 		The Time Before pbuilder

 		Birth of pbuilder

 		And the second year of its life

 		Fifth year of pbuilder

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

